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Abstract: We discuss the four-dimensional N = 1 effective approach in the study

of warped type II flux compactifications with SU(3) × SU(3)-structure to AdS4 or flat

Minkowski space-time. The non-trivial warping makes it natural to use a supergravity for-

mulation invariant under local complexified Weyl transformations. We obtain the classical

superpotential from a standard argument involving domain walls and generalized calibra-

tions and show how the resulting F-flatness and D-flatness equations exactly reproduce

the full ten-dimensional supersymmetry equations. Furthermore, we consider the effect of

non-perturbative corrections to this superpotential arising from gaugino condensation or

Euclidean D-brane instantons. For the latter we derive the supersymmetry conditions in

N = 1 flux vacua in full generality. We find that the non-perturbative corrections induce

a quantum deformation of the internal generalized geometry. Smeared instantons allow

to understand KKLT-like AdS vacua from a ten-dimensional point of view. On the other

hand, non-smeared instantons in IIB warped Calabi-Yau compactifications ‘destabilize’

the Calabi-Yau complex structure into a genuine generalized complex one. This deforma-

tion gives a geometrical explanation of the non-trivial superpotential for mobile D3-branes

induced by the non-perturbative corrections.
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1. Introduction

The realization of physically relevant models has always been one of the main objectives

of string theory. Therefore, configurations with the observable four dimensions in a dis-

tinguished role are of great interest. For various reasons, both phenomenological as for
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comparative ease of finding solutions, supersymmetry in these four dimensions is favoured.

Supersymmetry breaking is then to take place at a lower energy scale. Because of this,

Calabi-Yau manifolds have always made for one of the more natural starting points for

searching for interesting effective four-dimensional theories.

In the last decade it has been realized that the possibilities for realistic models can

be enormously enlarged by adding fluxes, branes and orientifolds to the internal compact-

ification space (for recent reviews on the subject and historically more complete lists of

references, see [1, 2]). There are two approaches to the problem, a four-dimensional and a

ten-dimensional one. In the four-dimensional approach, one typically starts from the effec-

tive low-energy four-dimensional theory arising in an ordinary fluxless compactification and

then adds the effect of fluxes as a modification of this four-dimensional theory: typically

some of the scalars picking up a charge and a potential being generated [3, 4]. In the second

approach on the other hand, one tries to construct and study full ten-dimensional config-

urations with fluxes, which in the general case means that one has to leave the familiar

realm of Calabi-Yau manifolds. The four-dimensional approach is obviously more practical

for searching effective theories with the desirable physical properties. However, since the

introduction of fluxes on the internal manifold can drastically change the geometrical and

topological properties of the original vacuum, one is confronted with the problem to what

extent the low-energy theory essentially based on the Calabi-Yau structure of the fluxless

compactification can still be trusted, calling for a better understanding of the relation

between the four- and ten-dimensional approaches.

For this reason, it is desirable that the four-dimensional effective theories be based

instead on the broader class of internal manifolds of SU(3) × SU(3)-structure describing

the most general geometric flux vacua. Indeed, it has been realized recently that minimally

supersymmetric type II flux configurations are naturally described using the language of

generalized complex geometry [5, 6]. For example, the supersymmetric conditions for such

general flux vacua can be elegantly written in terms of ‘polyforms’ (sums of forms of dif-

ferent degree) [7] which constitute the basic objects of generalized geometry. Gratifyingly,

the same is true for D-branes in these vacua, which are equipped with generalized calibra-

tions [8 – 13] providing a physical explanation of the polyform equations in [7].

Using an approach similar to the ones of [14 – 16] we clarify in this paper how these

N = 1 supersymmetric flux compactifications to both AdS or flat R
1,3 space-time can

be understood from a four-dimensional point of view. Two problems that hinder a full

reduction are that the fluxes generically mix different Kaluza-Klein scales and the moduli

space of the generalized compactifications is still not completely understood [17]. Therefore,

it is not easy to identify the zero- or light modes and integrate out the ‘massive’ modes

in order to obtain a four-dimensional supergravity with a finite number of fields. We will

not attempt such a reduction here — the problem is studied in N = 1 or N = 2 contexts

in e.g. [14 – 22] — but instead keep all Kaluza-Klein modes. This procedure should be

considered as a first step to full reduction. However, it turns out that — as we will

explain in a moment — we can already gain new insights when adding a non-perturbative

superpotential, a quantity that is usually associated to the four-dimensional description.

A related complication is the presence of a non-trivial warp factor multiplying the
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four-dimensional metric, which is often approximated to be constant. In effect, this means

neglecting the back-reaction of fluxes, D-branes and orientifolds on the geometry. Moreover,

a non-trivial warp factor is a physically important feature in flux compactifications (see

e.g. [23, 24]) and in flux vacua holographically dual to (possibly confining) gauge theories.

Thus, in this paper we will allow for a non-trivial warp factor, which turns out to naturally

lead to a four-dimensional N = 1 effective description that is invariant under complexified

Weyl transformations. Such a theory can be obtained by partially gauge-fixing the N = 1

superconformal supergravity presented e.g. in [25]. The resulting theory can be considered

as morally in the string frame. If needed, this formulation can always be ‘gauge-fixed’

to the standard Einstein frame, making contact with previous results. For example our

approach offers a natural way to treat the ‘warped’ Kähler potentials proposed in [24, 26]

in the context of IIB warped Calabi-Yau compactifications.

In this paper we do not directly derive the complete four-dimensional supergravity ac-

tion, but instead extract from simple arguments the ingredients needed to understand the

structure of supersymmetric vacua. For example the superpotential with correct depen-

dence on the warp factor will be derived by extending a standard argument [27] involving

(generalized) calibrations and domain walls to the generalized setting. In the constant warp

factor approximation, our result for the superpotential reduces to those obtained in [14 – 16]

by direct dimensional reduction. Our approach essentially still contains all the informa-

tion on the ten-dimensional theory, and as a check on the superpotential and (conformal)

Kähler potential we will show that all the ten-dimensional supersymmetry conditions can

be understood as D- and F-flatness conditions of our the four-dimensional theory.

Our approach also offers the possibility to add a non-perturbative correction to the su-

perpotential and see its effects on the ten-dimensional geometry. Indeed, non-perturbative

effects arising from instantonic D-branes or strong-coupling effects on stacks of ‘confin-

ing’ space-filling D-branes have played an important role in many models. For example

they are used to stabilize some background moduli along the line of [28] or, more recently,

they can induce a non-trivial superpotential for mobile space-filling D3-branes that would

classically be free to move in the internal space [29 – 31]. As an example of how our four-

to-ten approach allows to inspect the non-perturbative effects on the internal geometry of

the compactification, we will show how the AdS vacua found in [28] can be understood

from a ten-dimensional point of view as arising from smeared instantons. On the other

hand, and perhaps more importantly, a non-perturbative correction generically deforms the

generalized (complex) structure of the classical vacuum. In particular, the most studied

examples of IIB compactifications involve warped Calabi-Yau internal manifolds, which

are thus complex in the ordinary sense. In this case the non-perturbative corrections are

generated by Euclidean D3- or confining D7-branes and a simple argument will lead us

to conclude that they destabilize the internal ordinary complex structure into a genuine

generalized complex one. This deformation generates a geometrical superpotential [10] for

the classically free space-filling D3-branes. We discuss how this geometrical superpotential

is in perfect agreement with the ones computed in [30, 31] in completely different ways.

In order to lighten the presentation of the main results, many technical details have

been relegated to appendices, albeit they include also some new results. In particular we
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identify the proper holomorphic structure on the space of fluctuations of the SU(3)×SU(3)-

structure flux compactifications, which can also be useful in a future study of the moduli

space, and we derive the supersymmetry/calibration conditions for instantonic Euclidean

D-branes on general N = 1 flux vacua (which as expected are directly related to the space-

filling D-branes considered in [9 – 11]). We also find that the supersymmetric instanton

action depends holomorphically on as well the open as the closed string degrees of freedom,

while the anti-instanton is anti-holomorphic. These results on instantons may also be useful

in the gauge/gravity correspondence (see e.g. [32]).

In section 2 we review the description of ten-dimensional N = 1 flux compactifications

in the language of generalized geometry, while in section 3 we set up the four-dimensional

description. Indeed, in the first two subsections we extract the superpotential from a

Gukov-Vafa-Witten type argument and identify the holomorphic variables, the fluctuations

of which are studied in more detail in appendix B. We discuss briefly open string degrees of

freedom in the next subsection, and put the ingredients of the four-dimensional description

together and extract the Kähler potential in the last subsection. More details on the

Weyl invariant formalism we are using can be found in appendix C. In section 4 we

show how to derive the complete set of ten-dimensional supersymmetry equations as F-

and D-flatness conditions, for which we provide the example of IIB warped Calabi-Yau

compactifications in section 5. We demonstrate the effects of adding a non-perturbative

correction to the superpotential on the internal geometry in section 6 and provide the

examples of KKLT-like AdS vacua and mobile D3-branes. We end with conclusions. Apart

from the already mentioned appendices, appendix A reviews some generalized geometry lore

and in particular the generalized Hodge decomposition of forms. Appendix D derives the

conditions for obtaining a supersymmetric D-brane instanton in a flux vacuum and shows

that its action is holomorphic, when its deformations are dressed with the naturally induced

complex structure. Appendix E describes some properties of supersymmetric orientifolds

in flux compactifications.

2. Ten-dimensional supersymmetric vacua

We consider minimally supersymmetric type II vacua where the ten-dimensional space-

time takes a warped-factorized form X ×w M , with X either AdS4 or flat R
1,3, and M the

internal six-dimensional space. Thus the ten-dimensional metric has the form

ds2 = e2A(y)gµν(x)dxµdxν + hmn(y)dymdyn , (2.1)

where g is the metric on X and h is the metric on M . All the other supergravity fields

also preserve this splitting and furthermore, since we require N = 1 four-dimensional

supersymmetry, our background admits four independent Killing spinors of the form

ǫ1 = ζ+ ⊗ η
(1)
+ + ζ− ⊗ η

(1)
− ,

ǫ2 = ζ+ ⊗ η
(2)
∓ + ζ− ⊗ η

(2)
± , (2.2)
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for IIA/IIB.1 The Majorana conditions for ǫ1,2 imply the four- and six-dimensional reality

conditions (ζ+)∗ = ζ− and (η
(1,2)
+ )∗ = η

(1,2)
− . We will always impose on the flux vacua

the condition that the norms of the internal spinors be equal, η
(1)†
+ η

(1)
+ = η

(2)†
+ η

(2)
+ =

|a|2. This condition is necessary for supersymmetric AdS vacua [33, 34] or for introducing

supersymmetric D-branes or O-planes [9]. In (2.2) the two internal chiral spinors η
(1)
+

and η
(2)
+ are fixed for a specific solution. In fact, they define an SU(3) × SU(3)-structure

of TM ⊕ T ⋆
M and characterize the solution. On the other hand, ζ+ is any of the four

independent Killing spinors satisfying the equation

∇µζ− = ±1

2
W0γµζ+ , (2.3)

for IIA/IIB. In the following section we will explain how W0 is related to the on-shell value

of the, properly normalized, superpotential of the four-dimensional effective description, so

that |W0|2 = −Λ/3 where Λ is the effective four-dimensional cosmological constant.

In [7] the supersymmetry conditions obtained from the Killing spinor equations were

written in terms of polyforms obtained by the Clifford map from the bi-spinors η
(1)
+ ⊗η

(2)†
± .

It is convenient to introduce the normalized polyforms2

/Ψ± = − 8i

|a|2 η
(1)
+ ⊗ η

(2)†
± , (2.4)

and rename them as

Ψ1 = Ψ∓ and Ψ2 = Ψ± in IIA/IIB. (2.5)

The polyforms Ψ1 and Ψ2 can viewed as spinors of TM ⊕ T ⋆
M and as such are pure.

Furthermore they obey the following compatibility and normalization constraints

〈Ψ1, X · Ψ2〉 = 0 , ∀X ∈ TM ⊕ T ⋆
M , (2.6a)

〈Ψ1, Ψ̄1〉 = 〈Ψ2, Ψ̄2〉 = −8i
√

deth d6y , (2.6b)

where the Mukai pairing 〈·, ·〉 is defined in (A.3). Each of the two globally defined pure

spinors equips M with an SU(3, 3)-structure, or almost generalized Calabi-Yau structure.

The conditions (2.6) imply that these two structures combine into an SU(3) × SU(3)-

structure, which also provides a generalized metric (h,B = 0) for M . In this picture the

degrees of freedom of the B-field sit in the field-strength H instead.

By setting W0 = e−iθ/R, where R is the AdS radius, the supersymmetry conditions

found in [7] can be rewritten as the following two sets of equations

dH

(

e4A−ΦReΨ1

)

= (3/R) e3A−ΦRe(eiθΨ2) ∓ e4Aα(⋆6F ) , (2.7a)

dH

[

e3A−ΦIm(eiθΨ2)
]

= (2/R) e2A−ΦImΨ1 , (2.7b)

1Here and in the following, we mean that the upper sign is for IIA while the lower is for IIB.
2Note that in [10 – 13] the normalized pure spinors (2.4) were denoted by Ψ̂±, while Ψ± referred to the

ones via the Clifford map associated to η
(1)
+ ⊗ η

(2)†
± without normalization.
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for IIA/IIB — where α is the operator reversing the indices of a polyform — and

dH(e2A−ΦImΨ1) = 0 , (2.8a)

dH

[

e3A−ΦRe(eiθΨ2)
]

= 0 . (2.8b)

For the AdS case, where W0 6= 0, the eqs. (2.8) follow as integrability conditions from (2.7),3

while in the flat-space limit, W0 → 0, they must be added as independent conditions.

3. The off-shell four-dimensional description

In the previous section we have recapitulated the conditions for obtaining a minimally

supersymmetric vacuum compactification of type II from a ten-dimensional point of view.

In the next section, we will show that it is possible to understand all of those equations in

terms of effective four-dimensional N = 1 supergravity. But first we must set up this four-

dimensional description, which is the purpose of this section. We remark again that we are

not making any truncation to light modes; in other words we are keeping all KK-modes.

In realistic flux compactifications, especially to flat R
1,3 space-time, consistency often

requires the introduction of orientifolds, which have been studied in this setting in [15, 34,

35]. We will assume them to be present when needed and in this case we will implicitly

work on the covering space, where their effect can be seen as projecting out part of the

spectrum, as reviewed in appendix E. Using the results of that appendix, one can easily

check that the following results are consistent with such a quotient.

3.1 On-shell superpotential from domain walls

Let us now derive the form of the superpotential from a simple argument involving domain

walls, which was also used in [27] in the specific case of Calabi-Yau compactifications.

Here, we will start with an N = 1 generalized compactification with fluxes already present,

and then probe it with D-brane domain walls and instantons preserving half of the su-

persymmetry. This will allow us to obtain a more general result, not necessarily linked

to an underlying Calabi-Yau geometry. Our argument will give the properly normalized

superpotentials, automatically including a possibly non-trivial warp factor. The result will

be consistent with the superpotentials in the constant warp factor approximation, obtained

in [14 – 16] by dimensional reduction.

For simplicity, let us consider compactifications to flat R
1,3. The result is however, as

we will see, valid for AdS compactifications as well and the following analysis is readily

extendable to AdS backgrounds by using the results of [36]. Supersymmetric D-branes on

such general flux compactifications have been studied in [9, 10, 12], where it was shown

that the background is naturally equipped with generalized calibrations corresponding to

the pure spinors describing the supersymmetry. In particular, e3A−ΦΨ2 can be seen as the

calibration associated to domain walls. The directions in which the D-brane is stretched

go along for the ride so that the problem reduces to one on R×M , where R represents the

direction transverse to the domain wall, say x3. Then, the tension of a BPS domain wall

3We take into account the equations of motion for F .
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obtained by a D-brane wrapping (x1, x2) and an internal generalized cycle (Σ,F) is given

by4

TDW = 2π

∣

∣

∣

∣

∫

Σ
e3A−ΦΨ2|Σ ∧ eF

∣

∣

∣

∣

= 2π

∣

∣

∣

∣

∫

R×M
〈e3A−ΦΨ2, j

DW

(Σ,F)〉
∣

∣

∣

∣

, (3.1)

where jDW

(Σ,F) is the generalized current [11] in R×M associated to the domain wall. Using

the Bianchi identities, dHF = −jDW

(Σ,F), we obtain

TDW = 2π

∣

∣

∣

∣

∣

∫

{x3=∞}×M
〈e3A−ΦΨ2, F 〉 −

∫

{x3=−∞}×M
〈e3A−ΦΨ2, F 〉

∣

∣

∣

∣

∣

. (3.2)

From the four-dimensional point of view, the D-brane can be seen as the BPS domain wall

separating two flux configurations. Thus the expression (3.2) has to be compared with the

four-dimensional formula (see (3.41) and surrounding explanation)

TDW = 2|∆W| , (3.3)

from which we get the following on-shell superpotential

Won-shell = π

∫

M
〈e3A−ΦΨ2, F 〉 . (3.4)

To extrapolate the above on-shell expression to the complete off-shell superpotential

we demand holomorphicity as a minimal requirement. We should thus first find the natural

complex variables of the setup.

3.2 Holomorphic variables and off-shell superpotential

Let us start with the NSNS degrees of freedom. As recalled in section 2, the two pure

spinors Ψ1 and Ψ2 define the internal metric h. In fact, as explained in appendix A the

B-twisted pure spinors, indicated with a prime, also contain information on the B-field, so

that all the internal NSNS degrees of freedom h, B and Φ are contained in the two twisted

pure spinors e−ΦΨ′
1 and e−ΦΨ′

2.

Next, the internal RR degrees of freedom are contained in the (locally defined) RR-

potentials C, which satisfy dHC = F (or their twisted counterpart C ′ such that dC ′ = F ′).5

Furthermore, let us keep in mind that, as shown in [5], the complex pure spinors are in

fact completely defined by their real or imaginary part.

In our problem, a first natural holomorphic variable is suggested by the superpoten-

tial (3.4) itself and is given by

Z ′ ≡ e3A−ΦΨ′
2 . (3.5)

4To simplify expressions, we will adopt units that put 2π
√

α′ = 1.
5For massive IIA this expression is modified to F = dHC + me−B where the mass m = F(0). However,

the integrand of the Chern-Simons part of the D-brane action θCS also changes in such a way that still

dθCS = F ∧ eF , so that the argument based on D-brane instantons we will make below is still valid.
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On the other hand, we see in (3.4) the appearance of the RR field-strength F , which

does not appear in a complex combination. A natural completion is suggested by the

coupling of BPS D-brane instantons to the background fields. The proper supersymmetry

conditions for D-brane instantons are studied in appendix D. The outcome is that the

action of a supersymmetric D-brane instanton wrapping a supersymmetric generalized

cycle (Σ,F) in M is

SE = 2π

∫

Σ
(e−ΦReΨ1 − iC)|Σ ∧ eF . (3.6)

Thus we see that the natural complexification of the RR field-strength F is

F + idH(e−ΦReΨ1) , (3.7)

and indeed, in the probe approximation we are using, the additional term does not modify

the domain wall tension (3.2). The same complex completion is obtained by considering

space-filling branes and looking at the holomorphic function defining the vector multiplet

kinetic term, see appendix D.

To introduce the proper holomorphic variable we change to the twisted picture, fix a

certain representative RR field-strength F ′
0 so that F ′ = F ′

0 + d∆C ′, where ∆C ′ is now a

globally defined twisted polyform. Then one defines

T ′ ≡ e−ΦReΨ′
1 − i∆C ′ . (3.8)

That the holomorphic variable should take this form was already proposed in [15] based

on earlier work [37].

For the following discussion, it is useful to introduce also the pure spinor

t′ ≡ e−ΦΨ′
1 , (3.9)

whose degrees of freedom can be considered as contained in T ′, since Imt′ can be seen as

a function of Ret′ = ReT ′. Note however that the complex structure induced by t′ on

the degrees of freedoms contained in Ret′ is by definition incompatible with the complex

structure induced by T ′. In other words, the embedding t′ →֒ T ′ is not holomorphic.

In terms of the new variables the constraint (2.6a) can be written as

〈X · Z ′,ReT ′〉 = 0 , ∀X ∈ TM ⊕ T ⋆
M , (3.10)

so that together Z ′ and ReT ′ = Ret′ provide an SU(3) × SU(3)-structure — and thus a

metric h and B-field — for the twisted extension bundle (A.5). Moreover they also define

the dilaton Φ via

e2Φ =
4
√

det hd6y

〈Ret′, Imt′〉 , (3.11)

where again Imt′ should be considered as a function of Ret′ = ReT ′, and the warp factor

A through

e6A =
〈Z ′, Z̄ ′〉
〈t′, t̄′〉 . (3.12)
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Thus, we see that Z ′ and T ′ contain all the geometrical information about the compact-

ification and can be thus considered as the chiral fields of the four-dimensional description.

From (3.4), by demanding holomorphicity with respect to Z ′ and T ′, we finally arrive at

the following manifestly holomorphic off-shell superpotential

W = π

∫

M
〈Z ′, F ′

0 + idT ′〉 . (3.13)

In fact, their is some redundancy that we will explain later and plays a crucial role in

the following discussions. Furthermore, it is important to remember that these variables are

not completely independent but are constrained by (3.10). The appropriate holomorphic

parametrization of the fluctuations preserving this constraint is discussed in appendix B.

From the four-dimensional point of view the twisted holomorphic variables defined

above are conceptually the more appropriate. However, from the ten-dimensional point

of view the untwisted description is completely equivalent, merely transferring the degrees

of freedom of B from inside the pure spinors into an explicitly appearing H-field. The

untwisted picture has the advantage that the pure spinors are globally defined and in the

following we will prefer it, also to make easy contact with the previous results reviewed

in section 2. Anyway, the expressions are essentially identical, as for going to the twisted

picture the reader needs only to put primes on the polyforms and replace dH by d.

Thus, let us rewrite the off-shell superpotential (3.13) in the untwisted picture

W = π

∫

M
〈Z, F0 + idHT 〉 = π

∫

M
〈Z, F + idH(ReT )〉 . (3.14)

This superpotential agrees with the ones obtained in the literature [14 – 16] upon taking

constant warp factor. Thus, as discussed in those papers (see also [1]), it reproduces the

different superpotentials found in the literature for particular subcases. We will come back

to this point in section 5.

3.3 Intermezzo on open string degrees of freedom

In this subsection we discuss how the open string superpotential of [10] fits in. We note first

that in the presence of back-reacting localized sources – space-filling D-branes or O-planes

— the RR flux must obey the Bianchi identities

dHF = −j , (3.15)

where j is the sum of the generalized currents [11, 35] of all the sources: j =
∑

Dp j(Σp,F) +
∑

Op j(Σp). Thus, the tadpole condition demands that j must be dH-exact, which means

that there must be a generalized chain [12] whose generalized boundary gives the localized

sources, and we indicate the corresponding current with θ, such that dHθ = −j. Then, we

can split

F = θ + F̂ , (3.16)

so that dH F̂ = 0. In this way we have isolated the open string degrees of freedom and moved

them in θ so that F̂ contains only closed string degrees of freedom. Then, in the presence

– 9 –
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of D-branes an argument based on domain walls similar to that in subsection 3.1 exists for

the open string superpotential [10]. Putting both together, the complete closed plus open

string superpotential can be obtained by considering a generalized chain as defined in [12]

interpolating between two vacua with possibly different numbers of space-filling D-branes

and background fluxes. The result is that the total superpotential has the form

W = W(c) + W(o) , (3.17)

where the closed string superpotential W(c) is like (3.14) with F̂ instead of F , while in the

case of isolated D-branes

W(o) = π

∫

M
〈Z, θ〉 (3.18)

exactly reproduces the D-brane superpotential found in [10].

Note however that, differently from the closed string superpotential, the open string

superpotential (3.18) is only well-defined when the background has a flat four-dimensional

part and is on-shell, so that dHZ = 0. We suspect that this problem comes from the fact

that the κ-symmetric D-brane superaction [38] is only well-defined when the background is

on-shell. We therefore expect that a consistent introduction of D-brane degrees of freedom

is easier once the closed string spectrum has been consistently truncated to the light modes.

As an additional complication D-branes should also modify the Kähler potential. We

will not address these problems here and explicitly consider space-filling D-branes only in

section 6.

3.4 Four-dimensional supergravity

Let us start by observing that the metric ansatz (2.1) has an intrinsic ambiguity. Namely,

we can simultaneously shift the warp factor and rescale the four-dimensional metric as

follows

A → A + σ and g → e−2σg , (3.19)

while preserving the ansatz (2.1). In particular, when we consider a generic configuration

— not necessarily a vacuum — σ can be an arbitrary function of the xµ coordinates.

Now, the warp factor is given essentially by Z through (3.12). In fact Z contains a

redundancy associated to its overall phase. In particular we can perform the chiral rotation

Z → eiαZ , (3.20)

where α is in general xµ-dependent, without changing the geometrical content of the ten-

dimensional configuration.

Putting together (3.19) and (3.20) we see that a four-dimensional description of this

class of configurations in terms of Z and T should be naturally invariant under the local

complexified Weyl transformations

Z → Λ3Z and g → |Λ|−2g , (3.21)
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where Λ = eσ+ i
3
α is an arbitrary nowhere vanishing complex function of the xµs, and T

remains invariant.

The general N = 1 supergravity with such a gauge invariance can be constructed by

partially gauge-fixing the superconformal action of [25].6 We summarize here the main

ingredients needed for our purpose, leaving some more details for appendix C.

The four-dimensional supergravity action contains an Einstein term of the form

S =
1

2

∫

X
d4x

√

− det gN R + . . . , (3.22)

where R is the scalar curvature of the four-dimensional metric g and N can depend (non-

holomorphically) on Z and T . From dimensional reduction with ansatz (2.1) one can

readily identify

N = 4π

∫

M
d6y

√
det h e2A−2Φ . (3.23)

This can be written in terms of Z and t (and thus T ) in the following equivalent ways

N =
πi

2

∫

M
e−4A〈Z, Z̄〉 =

πi

2

∫

M
e2A〈t, t̄〉

=
πi

2

∫

M
〈t, t̄〉2/3〈Z, Z̄〉1/3

=
π

2

(

i

∫

M
e−4A〈Z, Z̄〉

)1/3(

i

∫

M
e2A〈t, t̄〉

)2/3

. (3.24)

where, in the second line, the rational powers of the two Mukai pairings combine to get a

well-defined density. The last expression is useful for taking first derivatives of N , since it

turns out that upon using (3.12) the contributions of both factors conspire such that A can

be effectively considered as a constant. As we will see N is related the the Kähler potential

in the usual Einstein-frame formalism, so we will call it the conformal Kähler potential.

The gravitino supersymmetry transformation contains the term

δψµ = ∇µζ− +
W
2N γµζ+ + . . . , (3.25)

from which, comparing with (2.3), we obtain the relation7

W0 = 〈W/N〉 . (3.26)

Furthermore, the potential evaluated at a supersymmetric vacuum is given by

V = −3|W|2
N . (3.27)

It follows that the cosmological constant is given by Λ = V/N = −3|W|2/N 2 = −3|W0|2.
6We thank Toine Van Proeyen for explaining this to us.
7The apparent sign discrepancy for type IIA can be fixed by changing the sign of the superpotential.
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The D-term D(k) associated to a gauged Killing vector k in the configuration space of

the chiral fields, is given by

D(k) = 3ikhol(N ) , (3.28)

where khol refers to the holomorphic projection of k. As for the F-flatness equation asso-

ciated to a chiral field φ we can find it from (C.6) and it has the form

∂φW − 3(∂φ logN )W = 0 . (3.29)

Even if keeping the formulation explicitly invariant under the complexified local Weyl

transformations (3.21) is more natural and allows to easily relate the four-dimensional

expressions to the ten-dimensional ones, one can fix this gauge invariance as explained

in [25]. This leads to a standard N = 1 supergravity in the Einstein frame with

N = M2
P , (3.30)

where MP is the four-dimensional Planck length measured in units where 2π
√

α′ = 1.8 As

in [25], one can explicitly isolate the ‘compensator’ Y in Z by redefining

Z → Y Z(z) , (3.31)

where now Z should be thought of as a section of a complex line bundle, whose holomorphic

base coordinates we indicate with z. Indeed, there is an ambiguity in the splitting (3.31)

under the redefinition

Y → e−f(z)Y and Z → ef(z)Z , (3.32)

with f(z) an arbitrary holomorphic function.

In the new split variables the four-dimensional part of the ten-dimensional metric (2.1)

becomes explicitly dependent on the compensator

ds2 = e2A|Y |2g + h , (3.33)

where A depends on the new Z as in the old expression (3.12). Note that the transfor-

mation (3.32) is not a complexified Weyl transformation since it does not affect the four-

dimensional metric g, but only the warp factor and is balanced by the explicit appearance

of the compensator Y in (3.33).

The superpotential WE of the resulting standard Einstein supergravity is

WE = M3
P W , (3.34)

and the Kähler potential is given by

K = −3 logN , (3.35)

8Here and in the following formulae, to reintroduce the explicit dependence on the string length one

must multiply MP by 2π
√

α′ in order to get a dimensionless quantity.
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where now W and N , while still formally given by the old expressions (3.14) and (3.24),

must be considered as functions of the new Z after the splitting (3.31). From the Weyl

gauge-fixing condition (3.30) we get

|Y |2 = M2
P eK/3 . (3.36)

The invariance under the redefinition (3.32) gives rise to the Kähler invariance of the usual

Einstein supergravity

Z → efZ , K → K− f − f̄ and WE → ef WE . (3.37)

The chiral symmetry (3.20) can be fixed by imposing Y = Ȳ [25]. Although this

breaks the invariance of the theory under (3.32), the Kähler symmetry can be preserved

by considering it as a combination of (3.32) and a correcting chiral transformation (3.20).

From (3.24) and (3.35) we find that the Kähler potential can be written as

K = −2 log

(

i

∫

M
e2A〈t, t̄〉

)

− log

(

i

∫

M
e−4A〈Z, Z̄〉

)

− 3 log
π

2
. (3.38)

However from (3.24) we also find that the Kähler potential may be expressed in alternative

ways using the dependence of A on Z and t, which also shows explicitly how the non-

trivial warp factor couples Z with t (and thus T ). This breaks a possible underlying

N = 2 description of the system where Z and t would belong to vector- an hypermultiplets

respectively [14, 16] and decouple.

The form (3.38) for the Kähler potential is the natural one for considering the constant

warp factor approximation, since in this form the warp factor effectively disappears. This

avoids problems related to the hidden dependence of the warp factor on Z and t and is

consistent with Kähler covariance (3.37) without worrying about the warp factor transfor-

mation. By putting A constant in (3.38) and restricting to SU(3)-structure backgrounds,

one gets indeed the Kähler potential obtained in [15] by dimensional reduction. Further-

more, in this approximation one recognizes the underlying N = 2 structure described

in [14, 16].

As a check, for constant warp factor, the ten-dimensional metric takes the form

ds2 =
M2

P

4πVol(M)
g + h (3.39)

where Vol(M) is the unwarped volume of the internal manifold M , thus reproducing the

standard relation

gst =
M2

P

4πVol(M)
g , (3.40)

between the four-dimensional string- and Einstein-frame metrics for unwarped compactifi-

cations.

Note that with (3.30), (3.34) and (3.35) the standard four-dimensional Einstein-frame

formula for the domain wall tension, which under suitable assumptions of the phases

reads [39]

TDW = 2|∆(eK/2WE)| , (3.41)
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can indeed be rewritten as (3.3) in terms of the superpotential W of the Weyl invariant

description.

As a final comment, the Kähler potential (3.38) satisfies a no-scale type condition [40]

∂K
∂φI

(K−1)IJ
∂K
∂φ̄J

= 4 , (3.42)

where KI
J = ∂2K/(∂φI∂φ̄J ) and the φI represent a set of chiral fields obtained by ex-

panding T in some base. The condition (5.13) is usually presented for constant warp

factor, but here we see that it is valid in general. To derive it, we first rewrite the Kähler

potential (3.38) as

K = −3 log

(

πi

2

∫

M
〈t, t̄〉2/3〈Z, Z̄〉1/3

)

. (3.43)

Then, the condition (3.42) follows from some simple algebraic manipulations, using the

fact that the integrand in (3.43) is homogeneous of degree 4/3 under the rescaling ReT =

Ret → α ReT .

4. Equivalence of the supersymmetry conditions in the four- and ten-di-

mensional description

In this section we discuss how the four-dimensional vacuum supersymmetry conditions

obtained from the conformal Kähler potential N and the superpotential W reproduce the

full ten-dimensional supersymmetry conditions reviewed in section 2. We first discuss D-

terms and the resulting D-flatness condition in subsection 4.1. The F-flatness conditions are

discussed next in subsection 4.2. In the AdS case, they automatically imply the D-flatness

condition, in agreement with standard four-dimensional arguments.

4.1 D-terms in generalized flux compactifications

There is some redundancy in the parametrization of the degrees of freedom with T and Z,

which is given by the RR gauge transformations δλC = dHλ. They induce the transforma-

tion δλT = −idHλ. These transformations can be seen as symmetries of the field space,

which are gauged in the final theory.

Indeed, consider the vector-like RR-fields C[1] with one leg along X. From the four-

dimensional point of view they correspond to gauge fields and the associated gauge trans-

formations are obtained by ‘gauging’ λ to depend also on the coordinates xµ of X. Then

the gauge transformations are given by δλC[1] = dxλ and δλC = dHλ, where dx = dxµ∂µ

and dH = dym∂m + H∧ are the exterior derivatives along X and M respectively. Of

course, these axionic gauge symmetries would be spontaneously broken in any vacuum, so

that these fields gain a mass by the Higgs mechanism.
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On general grounds, we expect the existence of D-terms corresponding to these gauged

symmetries.9,10 From δλT = −idHλ, we can extract the form of the D-term using (3.28),

obtaining

D(λ) = 2π

∫

M
〈λ,D〉 , (4.1)

with the D-term density D given by

D = dH(e2AImt) . (4.2)

From (3.9) we see that the supersymmetry equation (2.8a) can be interpreted as a

D-flatness condition

D = 0 . (4.3)

4.2 F-terms and ten-dimensional supersymmetry

In this subsection we show that the ten-dimensional supersymmetry equations (2.7)

and (2.8) can be obtained from the superpotential (3.14) and the conformal Kähler poten-

tial (3.24). Firstly, we parameterize the independent fluctuations of our fields T and Z
as discussed in appendix B, taking into account that ReT and Z are subject to the con-

straint (3.10). This means that they parameterize the possible SU(3) × SU(3)-structures

on M and are not completely independent, while C = −ImT on the other hand is in-

dependent. The result is that the independent holomorphic deformations of T and Z
are classified by the Hodge decomposition induced by the (almost) generalized complex

structure associated to Z as follows

δT ∈ Γ(V0 ⊕ V−2) and δZ ∈ Γ(V3 ⊕ V1) . (4.4)

Let us consider first the variation δT , for which the F-flatness condition

δT W − 3(δT logN )W = 0 (4.5)

can be readily seen to give rise to the equation

dHZ =
2iW
N e2A Imt = 2iW0 e2A Imt , (4.6)

where we have used (3.26). This exactly reproduces the complex combination of (2.7b)

and (2.8b). In the generic AdS case, since W0 6= 0 this equation implies (2.8a), which we

have already interpreted as a D-flatness condition in the previous subsection.11

9Note that these gauge symmetries are invisible in a reduced four-dimensional theory, which uses only

cohomology representatives. In such a reduced theory the massive modes are supposed to be integrated out

and only zero modes are considered.
10For IIA SU(3)-structure toroidal vacua a previous analysis of D-terms from the ten-dimensional point

of view can be found in [41].
11Note that it also implies (3.10), using the fact that in general 〈X · Z, dHZ〉 ≡ 0.
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Secondly, the F-flatness equation resulting from a variation of Z is

∫

M
〈δZ,dHRet − iF − W

2N e−4AZ̄〉 = 0 . (4.7)

Considering the two different deformations in (4.4) separately, and using again W0 =

〈W/N〉 one gets12

(dHRet − iF )|V−1 = 0 , (4.8a)

(dHRet − iF )|V−3 =
1

2
W0 e−4AZ̄ . (4.8b)

In order to show the equivalence between (4.8) and (2.7a) one has to use the double general-

ized Hodge decomposition of appendix A and the associated Hodge duality property (A.11).

The U0,−1-component of (4.8a) is then readily seen to be equivalent to the corresponding

component in (2.7a) as are the U±2,−1-components upon using

dH(e2ARet)|U±2,−1 = 0 , (4.9)

which follows from (2.8a) using (A.15). Finally, to show the equivalence of the V−3-

component one first notes that (4.8b) implies, together with (4.6), that

F |V−3 = − i

2
W0 e−4AZ̄ . (4.10)

We can thus rewrite it as

(dHRet + iF )|V−3 =
3

2
W0 e−4AZ̄ , (4.11)

which we find, using again the Hodge duality property, to be equivalent to the corresponding

component of (2.7a).

This closes our proof that for AdS compactifications the F-flatness conditions aris-

ing from the superpotential (3.14) and conformal Kähler potential (3.24) reproduce the

complete set of ten-dimensional supersymmetry equations (2.7) and (2.8). In the case of

compactifications to flat R
1,3 one has to add the D-flatness condition (4.3) which is then

not automatically implied by the F-flatness condition (4.6).

As a final remark, let us note that if we would have tried to restrict from the begin-

ning to generalized complex vacua (such that dHZ = 0) the superpotential (3.14) would

have been completely independent of T . Thus, due to the no-scale property (3.42) the

effective potential would have been positive definite, and vanishing at the supersymmetric

vacuum [40], leading to a vanishing cosmological constant, in agreement with our previous

ten-dimensional considerations. This is very similar to what happens in the usual approach

to warped Calabi-Yau compactifications, which we will revisit in the following section.

12In the case W0 = 0 these equations were already rewritten in this form in [17].
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5. Revisiting the Gukov-Vafa-Witten superpotential

In the previous section we have proven that the four-dimensional superpotential (3.14) and

the conformal Kähler potential (3.24) (or the Kähler potential (3.38) in the gauge-fixed

Einstein-frame description) reproduce the full ten-dimensional supersymmetry equations.

A key point in the derivation of these D- and F-flatness conditions is that in fact we

consider the full Kaluza-Klein spectrum of fluctuation modes. This is in contrast with the

path usually followed when studying the moduli-lifting upon adding fluxes to a Calabi-Yau

manifold. The warp factor is then often approximated by a constant and the spectrum of

internal fluctuations is truncated to what would be the massless spectrum of the underling

Calabi-Yau geometry. The superpotential is then seen as a function of only these ‘light’

modes.

Prototypical for this approach is the famous Gukov-Vafa-Witten superpotential for IIB

warped Calabi-Yau compactifications

WGVW =

∫

M
Ω̂ ∧ G(3) , (5.1)

where Ω̂ is the holomorphic (3, 0)-form associated to the Calabi-Yau geometry and G(3) =

F(3) + ie−ΦH = dC(2) + τH, with τ = C(0) + ie−Φ constant. On the other hand the

Kähler potential is obtained essentially from the underlying N = 2 theory, by truncating

the spectrum via the O3/O7 orientifold projection and neglecting the warp factor. For the

Kähler moduli one has to identify the right holomorphic variables as in [37]. This gives a

no-scale theory, with corresponding supersymmetry equations

G3,0 = G0,3 = G1,2 = 0 . (5.2)

This however does not reproduce all the ten-dimensional supersymmetry equations. Indeed,

one has to add two additional conditions. The first is the primitivity condition

Ĵ ∧ G = 0 , (5.3)

where Ĵ denotes the Kähler structure of the Calabi-Yau. The second is a relation between

F(5) and the warp factor, which we will write out later. Furthermore, one can extend

this class of warped Calabi-Yau compactifications to F-theory compactifications, with non-

constant holomorphic axion-dilaton τ . This case also seems not to be covered by (5.1).

To clarify the general but somewhat formal analysis of the previous sections, let us

repeat it in detail for the more familiar example of warped Calabi-Yau compactifications.

They can be seen as a particular subclass of the (strict) SU(3)-structure compactifica-

tions, which are in turn obtained as a subsector of the more general SU(3) × SU(3) vacua

considered in this paper by setting

Ψ+ = eiϑeiJ and Ψ− = Ω , (5.4)

where ϑ is in general point-dependent and J and Ω define the SU(3)-structure, for which

the conditions (2.6) become

J ∧ Ω = 0 ,
1

3!
J ∧ J ∧ J = − i

8
Ω ∧ Ω̄ =

√
det hd6y . (5.5)
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For the IIB warped Calabi-Yau compactifications eiϑ = 1 so that the ‘normalized’ pure

spinors take the form

Z ≡ Ω̂ = e3A−ΦΩ and t = e−ΦeiJ , (5.6)

and thus

T = e−ΦRe(eiJ) − i∆C . (5.7)

By plugging (5.6) and (5.7) into (3.14) one indeed gets (5.1). Furthermore, the Kähler

potential (3.38) takes the form

KwCY = −2 log

(

4

3

∫

M
e2A−2ΦJ ∧ J ∧ J

)

− log

(

− i

∫

M
e−4AΩ̂ ∧ Ω̂

)

− 3 log
π

2
, (5.8)

which, for constant dilaton and under the identification Ĵ = e2A−ΦJ , agrees with the

warped Kähler potential proposed in [24, 26].

From our general discussion, we know that the superpotential (3.14) and the Kähler

potential (3.38), as functionals of all the fluctuation modes, reproduce the full set of ten-

dimensional supersymmetry conditions. Therefore, in our approach we start by assuming

only the SU(3)-structure condition (5.6), with no integrability of the complex and (warped)

Kähler structures. Consider first the D-flatness condition. As we have seen it is associated

to the RR gauge transformations δC = dHλ and is thus invisible in an approach considering

only cohomology representatives. From (4.2) we have the equation

dH(e2A−ΦJ) = 0 . (5.9)

which implies that Ĵ = e2A−ΦJ is closed (so that the internal space, if complex, has a

warped Kähler metric) and H is primitive. So we naturally obtain as a D-flatness condition

what should be imposed by hand in the usual approach.13

Let us now turn to the F-flatness conditions, starting from those of the form (4.5). Since

we want to consider solutions which respect the ansatz (5.6), we must use the generalized

Hodge decomposition Λ•T ⋆
M ⊗ C =

⊕

k Vk associated to Z = Ω̂ to decompose the space of

complex forms. Its relation to the standard Hodge decomposition is

Vk =
⊕

p

Λ3−p,3−k−p , (5.10)

where Λp,q contains the (p, q)-forms as defined by the (for the moment almost-) complex

structure Ω̂. Then, from the discussion in appendix B a set of holomorphic independent

deformations of T is given by

δT ∈ V−2 = Λ1,3 ⊕ Λ0,2 ,

δT ∈ V0 = Λ0,0 ⊕ Λ1,1 ⊕ Λ2,2 ⊕ Λ3,3 . (5.11)

13However, in specific cases, it can still appear from an effective four-dimensional gauged supergravity

approach, see e.g. [42].
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Since Z = Ω̂, it is easy to see that δT 1,3 and δT 3,3 give empty F-flatness conditions,

while δT 1,1 and δT 0,2 give the conditions

(dΩ̂)2,2 = 0 and (dΩ̂)3,1 = 0 . (5.12)

The first implies that Ω̂ defines an integrable complex structure, and the second that Ω̂ is

holomorphic with respect to it. These conditions are also usually assumed from the start

while here they are derived from the superpotential (3.38).

Secondly δT 2,2 gives the F-flatness condition

(W/N ) Ĵ = 0 , (5.13)

which in turn implies that W0 = 〈W/N〉 = 0, so that it is impossible to have AdS vacua sat-

isfying the ansatz (5.6) and (5.7), and in fact the general IIB SU(3)-structure ansatz (5.4).

This ten-dimensional result is usually associated to the no-scale structure [40] that is ob-

served in the effective theory with truncated spectrum and constant warp factor [23]. From

the discussion at the end of the previous section, this no-scale property remains valid when

taking into account a non-trivial warp factor.14

Finally we consider δT 0,0 = −iδτ . The resulting equation is

Ω ∧ H = 0 ⇒ H3,0 = H0,3 = 0 . (5.14)

This condition can also be obtained (in cohomology) in the truncated theory by varying

the Gukov-Vafa-Witten superpotential with respect to τ .

Let us now turn to the F-flatness equations associated to Z, see eq. (4.7). From δZ3,0

and δZ2,1 one gets respectively

G0,3 = 0 and G1,2 = 0 . (5.15)

These conditions can be also obtained in cohomology in the truncated theory as we re-

viewed before. However, in the untruncated theory we must consider two further kinds of

fluctuations δZ3,2 and δZ0,1 that have no representatives in the truncated theory, since

they correspond to ‘generalized complex’ deformations. They give respectively

∂̄τ = 0 and eΦF 3,2 = − i

2
∂(4A − Φ)J ∧ J . (5.16)

The second condition can be re-expressed in terms of the ‘magnetic’ dual of F(5) with four

legs along R
1,3, relating it to the warp factor and dilaton. It is well-known that the two

conditions (5.16) must be imposed in the full ten-dimensional solution, see e.g. [1], but are

missing in the truncated approach. For an overview of all the supersymmetry equations of

the warped Calabi-Yau setting, see table 1.

14In the previous section we discussed how the no-scale property is valid for any compactification on a

generalized complex manifold such that dHZ = 0. In the warped Calabi-Yau case, one usually imposes

the weaker condition dΩ̂ = 0, i.e. without also H ∧ Ω̂ = 0, so that the resulting superpotential cannot be

considered independent of the axion-dilaton τ . The only effect is that one needs to exclude the contribution

of τ from the sum in the left-hand side of (3.42), leaving a 3 on the right-hand side and thus still giving a

no-scale theory.
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Equation Truncated theory (GVW) Untruncated theory

dΩ̂ = 0 assumed F-flatness δT
dĴ = 0 assumed D-flatness

G0,3 = G1,2 = 0 F-flatness F-flatness δZ
H3,0 = 0 F-flatness F-flatness δT

H ∧ Ĵ = 0 added by hand D-flatness

∂̄τ = 0 added by hand F-flatness δZ (generalized)

4dA − dΦ = eΦ ⋆6F(5) added by hand F-flatness δZ (generalized)

Table 1: Derivation of the supersymmetry equations in IIB warped Calabi-Yau.

Thus we see that, even if (3.14) reduces to (5.1) once truncated, the truncated theory

misses important information about the full ten-dimensional geometry, which is encoded

in (3.14) and (3.38) by considering the most general infinitesimal deformations including

those in the ‘generalized complex directions’. Of course, the discussion presented in the

previous sections is completely general and thus the analysis of this section can be repeated

for (massive) IIA SU(3)-structure flux compactifications. In particular, in an O6-orientifold

compactification we have the pure spinor ansatz

Z = e3A−ΦeiJ , t = e−ΦΩ , (5.17)

and the truncated superpotential (3.14) takes the form

WIIA =

∫

M

[

d(e3A−ΦJ) − ie3A−ΦH
]

∧ (e−ΦReΩ) −
∫

M
F ′ ∧ e3A−Φe−(B+iJ) , (5.18)

which for constant warp factor takes exactly the form found in [27, 18, 43] for flux Calabi-

Yau compactifications. Note however that here, as opposed to the IIB case considered

above, the truncation of the theory based on Calabi-Yau geometry is not justified since

one already knows that a generic15 supersymmetric IIA SU(3)-structure vacuum cannot

have an underlying Calabi-Yau structure. It follows that one cannot ‘expand’ the complete

superpotential (3.14) around such a point. For IIB warped Calabi-Yau such an expansion,

even if not complete, is at least consistent.

6. Quantum corrected ten-dimensional geometry

In sections 4.1 and 4.2 we have seen that the classical ten-dimensional supersymmetry

equations (2.7) and (2.8) can be reproduced as D- and F-flatness conditions of the four-

dimensional effective theory. Note that each of these equations has a natural interpreta-

tion in terms of different types of D-branes — space-filling, domain-wall or string-like in

four-dimensions — ‘probing’ the ten-dimensional space-time. Indeed, physical arguments

require that a supersymmetric background be equipped with corresponding generalized cal-

ibrations of the kind introduced in [8, 9], fixing completely the structure of (2.7) and (2.8).

15With a precise choice of orientifold sources, which have to be smeared however, it is possible to obtain

a Calabi-Yau solution [44].
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This result was shown for compactifications to flat space in [9, 10, 12] and can be extended

to AdS compactifications [36]. So we expect the main structure of (2.7) and (2.8) to be

preserved by both perturbative and non-perturbative quantum corrections, the latter be-

ing induced by world-sheet or brane instantons of different kinds. The four-dimensional

point of view seems the most natural for studying such corrections. Thus, we start from

there and use the formalism of the previous sections to understand the effect of the quan-

tum corrections to the four-dimensional description in terms of corrections to the internal

geometry of the full ten-dimensional picture.16

The Kähler potential is expected to be affected by both perturbative and non-pertur-

bative corrections, see e.g. [47, 48]. These are difficult to compute even in the simplest

explicit settings, see e.g. [1, 2], and we have not much to say about them in our general

analysis. A possible guess is that they modify the (warped) Hitchin functionals entering

the definition of the Kähler potential (3.38) and the constraint (3.12) in such a way that

from the F-terms and D-terms one can still write equations which have morally the same

structure as (2.7) and (2.8). In the following we will not consider such corrections explicitly

and just use the classical Kähler potential (3.38).

We can say more about the corrections that may affect the superpotential. For the

Gukov-Vafa-Witten superpotential (5.1) at least, perturbative corrections are shown not to

arise [49, 50]. The argument of [50] for instance is based on the non-renormalization of

the tension of the BPS domain walls used in [27] to derive this superpotential. Exactly

this domain wall method we also used to extend the superpotential to the generalized

case. While this might be thus one possible approach to a generalization of the non-

renormalization theorem, this generalization does not seem straightforward to us, although

this point clearly deserves a thorough study.

Well-known mechanisms that do generate non-perturbative corrections are Euclidean

D-brane instantons (sometimes called E-branes) or stacks of space-filling D-branes that un-

dergo gaugino condensation. Their supersymmetry conditions on general N = 1 flux vacua

are studied in appendix D and [9, 10] respectively, and it turns out that they must wrap

the same internal generalized cycles. Assume for the moment that there are no background

branes different from the ones directly involved in the generation of the non-perturbative

effect. Suppose these D-branes wrap an internal supersymmetric generalized cycle (Σ,F),

which we will refer to as the instantonic (generalized) cycle. Then, using (D.11) and (D.12)

we find for both mechanisms that the non-perturbative correction to the superpotential has

the following form

Wnp = A exp

(

− 2π

n

∫

Σ
T |Σ ∧ eF

)

exp

(

2πi

n

∫

B
F0|B ∧ eF̃

)

, (6.1)

where n is the number of space-filling D-branes in the stack or n = 1 for the instantonic

D-brane contribution, and (B, F̃) is a generalized chain whose generalized boundary [12]

consists of (Σ,F) and a fixed reference generalized cycle in the same generalized homology

class [12]. It is useful to introduce the generalized currents jnp and θnp associated to the

16The influence of non-perturbative corrections on the internal structure of the compactification has

already been considered in [45, 46].
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cycle (Σ,F) and the chain (B, F̃) (so that dHθnp = jnp − jref). Then the non-perturbative

correction to the superpotential (6.1) can be written as

Wnp = A exp

(

− 2π

n

∫

M
〈T , jnp〉

)

exp

(

2πi

n

∫

M
〈F0, θnp〉

)

. (6.2)

At one loop, the overall factor A comes from the determinant of the Dirac action for

the fermions on the D-branes [51], and should depend holomorphically on the background

closed and open string degrees of freedom in a way consistent with the complexified Weyl

invariance (3.21), or the Kähler invariance (3.37) in the Einstein frame. Its explicit form

is generically hard to compute, even if it may be possible to obtain a criterium for this

factor not to vanish in terms of an index for the fermionic zero modes, extending the

arithmetic genus considered for F-theory compactifications in [52], similarly to the proposal

presented in [53]. We will not attempt to address these important issues here and we will

systematically assume that the dependence of A on the closed string degrees of freedom is

negligible for the following discussion. A possible dependence of A on background space-

filling D-branes will be considered in subsection 6.2. It turns out that even with this

rather crude approximation we obtain nevertheless sensible results on the ten-dimensional

geometry produced by the non-perturbative effect.17

Now, repeating the analysis of section 4.2, one easily finds that the non-perturbative

contribution (6.2) generates a correction to eq. (4.6)

dHZ =
2iWtot

N e2AImt +
2i

n
Wnp jnp . (6.3)

where we have used the total superpotential

Wtot = W + Wnp , (6.4)

while in (4.8) one only needs to make the substitution W → Wtot.

In the next subsections we will show that the modified equation (6.3) provides insight

in the ten-dimensional geometry of two important non-perturbative effects in IIB warped

Calabi-Yau compactifications, which are usually only understood from the four-dimensional

effective theory. The first is the existence of supersymmetric AdS vacua resulting from the

non-perturbatively corrected superpotential [28]. The second is the non-perturbative gen-

eration of a non-trivial superpotential for so-called mobile space-filling D3-branes, thereby

reducing their moduli space.

6.1 KKLT-like AdS vacua from smeared instantons

Instead of focusing on the IIB warped Calabi-Yau case, let us be more general. Consider

a classical supersymmetric compactification to flat R
1,3. Thus Z is dH-closed

dHZ = 0 , (6.5)

17Let us also observe that the overall procedure to compute A seems in principle not completely well-

defined in our case, since it assumes the use of a probe instantonic D-brane on a fixed supersymmetric

background vacuum and the validity of the extrapolation of the result to a general off-shell expression is

not obvious.
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which is associated to the existence of an integrable generalized complex structure, reducing

to the ordinary complex structure in the warped Calabi-Yau case.

Let us now include the non-perturbative effect, as explained above. Since jnp is a

localized source, clearly the perturbed equation (6.3) can not be satisfied if dHZ = 0, im-

plying that the generalized complex structure defined by Z cannot be integrable. However,

the analysis of [28] suggests a four-dimensional mechanism to obtain an AdS vacuum in

a warped Calabi-Yau compactification preserving its integrable complex structure. So the

two points of view seem incompatible.

However one can consider a simplified version of (6.3) obtained by smearing the in-

stanton generating the source term. It is natural to introduce a supersymmetric smeared

current as follows

̃np =
πσ

N e2AImt , (6.6)

where, in analogy with [28], we have defined

σ =

∫

Σ
ReT |Σ ∧ eF . (6.7)

Indeed, ̃np satisfies the calibration/supersymmetry conditions ̃np ∈ Γ(V0) and 〈̃np, Imt〉 =

0, see [9, 11] and appendix D. Furthermore the normalization is chosen such that

∫

M
〈ReT , ̃np〉 =

∫

M
〈ReT , jnp〉 = σ . (6.8)

Let us assume, like in [28], that W, A and Wnp all have the same phase. Then we see

that substituting ̃np for jnp in (6.3), we can now have a solution preserving the classical

condition dHZ = 0. Indeed we just have to put the right hand side of (6.3) to zero, finding

W = −Wnp

(

1 +
π

n
σ

)

. (6.9)

In (6.9) W refers to the expectation value of the classical superpotential (3.14) that should

be tuned to a small negative number by an appropriate choice of fluxes. This choice of

fluxes should then be compatible with the appropriately quantum corrected equation (4.8).

That point is not under control yet. Anyway, eq. (6.9) reproduces the structure of eq. (13)

of [28]. In practice, the smearing puts us in the zero-mode approximation, implicit in the

four-dimensional approach of [28].

Eq. (13) of [28] has an additional factor of 4/3 multiplying σ in (6.9). This discrepancy

can be understood in the following way. In the case of a warped Calabi-Yau compactifi-

cation as in [28], when we smear a four-dimensional generalized cycle (Σ,F) as above, we

assume the presence of a non-trivial world-volume flux F . This is generically the case since

H 6= 0 and is needed in order for the smearing

jnp = −δ(2)(Σ) + δ(2)(Σ) ∧ F − 1

2
δ(2)(Σ) ∧ F ∧ F

→ ̃np = C e2A−Φ

(

J − 1

3!
J ∧ J ∧ J

)

(6.10)
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to make sense. As above the normalization (6.8) puts then C = πσ/N .

However in [28] it is assumed that F = 0. This means that jKKLT
np = −δ(2)(Σ) and thus

a more natural smearing would be

jKKLT
np = −δ(2)(Σ) → ̃KKLT

np = CKKLT e2A−ΦJ . (6.11)

Imposing (6.8) for ̃KKLT
np determines CKKLT = 4πσ/(3N ) = 4C/3. This gives exactly the

result of [28]

WKKLT = −Wnp

(

1 +
4π

3n
σ

)

. (6.12)

Note however that one should in principle make the complete right-hand side of (6.3) vanish,

and the smearing (6.11) only accomplishes this partly. Thus, our general ten-dimensional

analysis suggests that a non-trivial world-volume flux F on the instanton should be con-

sidered, leading to (6.9). An alternative to get (6.12), keeping the smearing (6.11) and still

satisfying (6.3), may be possible by fine-tuning an appropriate H-field, necessarily such

that H ∧ Ω̂ 6= 0.

6.2 Instanton generated generalized complex deformation and D3-brane moduli

lifting

Let us now consider a different application of (6.3) based on localized instantons. In the

regime of reliability of the non-perturbative correction, we expect the first term on the

right-hand side of (6.3) to be small, as the estimate of the previous subsection confirms.

Thus, locally, we may consider the source term as the leading one on the right-hand side

of (6.3) and write

dHZ ≃ 2i

n
Wnp jnp . (6.13)

It follows that in this approximation the internal space can still be considered generalized

complex away from the source, but not globally due to the non-perturbative correction

generating a localized obstruction term!

One interesting consequence of this remarkable result is obtained by considering again

the warped Calabi-Yau IIB background. Then Z ≡ Ω̂ is a holomorphic (3, 0)-form defining

an ordinary complex structure on M . In this background probe D3-branes have trivial

classical superpotential WD3, since dWD3 = −πZ(1) = 0 [10]. Supersymmetric D3-branes

should have vanishing D-term, which puts eiϑ = 1, indeed selecting the warped Calabi-Yau

vacua. These admit supersymmetric generalized four-cycles (Σ,F), where Σ must be a

complex divisor inside M and F is restricted to be (1, 1) and primitive [54, 9]. On these

four-cycles instantons may wrap and generate non-perturbative corrections.

In this case the non-perturbatively corrected equation (6.13) implies that

dZ(1) = −2i

n
Wnp δ(2)(Σ) . (6.14)

Thus we see that, even if dZ(1) = 0 away from the locus of the instantonic cycle Σ, we cannot

have in general Z(1) ≡ 0. This means that the ordinary complex structure is deformed into
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an honest generalized complex structure of type 1 implying in turn that a probe D3-brane

feels a non-perturbatively generated superpotential [10, 11]. This conclusion has already

been reached from different points of view in [29 – 31] and here we re-discover it from an

alternative ten-dimensional geometrical interpretation.

To compare explicitly with the results of [29 – 31] let us consider Z(1) as a small defor-

mation of Ω̂, resulting into a small deformation of the associated complex structure into

a truly generalized complex one. If Z(1) is small, then to first approximation it must be

a holomorphic (1, 0)-form with respect to the original background complex structure [6].

Thus locally we can write Z(1) = −(1/π)∂WD3, where we are implicitly differentiating with

respect to the position of the probe D3-brane. If we now consider not probe D3-branes,

but D3-branes that are already present in our background, they should nevertheless feel

the same non-trivial superpotential WD3. On the other hand Wnp itself contains all the

dependence on the space-filling D3-brane moduli18 [29, 31] and we are thus led to identify

WD3 with Wnp. More explicitly, putting WD3 = Wnp in eq. (6.14) leads to

∂̄(∂ logWnp) =
2πi

n
δ(2)(Σ) . (6.15)

Since the dependence of Wnp on the D3-brane moduli is completely contained in A, (6.15)

becomes an equation for this prefactor, which can be readily integrated into

A = f1/n Ã , (6.16)

where Ã does not dependent on the D3-brane moduli and f is the holomorphic section of

the line bundle associated to the divisor Σ, which vanishes at the location of Σ itself.19

The resulting non-perturbative superpotential has thus the form

Wnp = f1/nW̃np , (6.17)

where W̃np does not depend on the space-filling D3-moduli, while this dependence is com-

pletely contained in f . Note that by plugging (6.17) back into Z(1) = −(1/π)dWnp we get,

at the location of the D3-branes,

Z(1) = − 1

nπ
f (1−n)/ndf W̃np . (6.18)

At weak coupling gs = 〈eΦ〉 ≪ 1 so that W̃np is exponentially suppressed. Then, if the

non-perturbative correction is generated by instantonic D3-branes (i.e. n = 1), the small

Z(1) approximation is valid for any position of the D3-branes. On the other hand, when the

non-perturbative effect is induced by ‘confining’ D7-branes, the small Z(1) approximation

breaks down close to the D7-branes where f = 0. Moreover the dilaton diverges so that

W̃np is not guaranteed to be small either. This suggests that close to the D7-branes the

18This dependence arises through the back-reaction of the D3-branes on the background fields which

enter the non-perturbative correction [29, 31].
19The vanishing of the superpotential at the location of the divisor comes from the open strings stretching

from the D7/E3-brane and the space-filling D3-branes [29, 31].
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underlying Calabi-Yau complex structure seems not reliable anymore, so that we have to

replaced it by a full generalized complex structure. Of course in this case classical IIB

theory seems not reliable as well and it would be interesting to see if a similar effect can

be recovered in an F-theory approach to the problem.

The final formula (6.16) is in perfect agreement with the results [29 – 31] but gives a

new ten-dimensional insight into them. The key point is the deformation of the classical

background complex structure into a non-perturbatively generated truly generalized com-

plex structure, which is exactly what gives a non-trivial superpotential to the D3-branes

in a geometric way along the lines of [10, 11].

7. Conclusions

In this paper we have shown that the ten-dimensional supersymmetry conditions for type

II fully warped flux compactifications to AdS4 or flat R
1,3 space-time can be recovered

from a purely four-dimensional supergravity description, albeit implicitly with an infinite

number of fields. In particular, we have used a four-dimensional formulation that is in-

variant under local complexified Weyl transformations. This allows for a direct uplifting

of the results to ten dimensions. By gauge-fixing the Weyl invariance one can obtain a

standard Einstein-frame supergravity description [25], making contact with previous pro-

posals in the literature to describe the four-dimensional theory corresponding to warped

Calabi-Yau compactifications [24, 26], and offering a natural interpretation and extension.

Furthermore our results are consistent with the results for general SU(3) or SU(3)×SU(3)-

structure backgrounds obtained in [14 – 16], in the constant warp factor approximation, by

dimensional reduction.

Our approach puts forward that a non-trivial warp factor, essential in many physically

interesting scenarios, affects considerably the structure of the four-dimensional theory. For

example, it explicitly breaks a possible underlying N = 2 description to N = 1 by entering

the Kähler potential (3.38) in such a way as to couple to each other the bosonic fields that

would be obtained from the vector- and hypermultiplets of the corresponding underlying

N = 2 theory in the constant warp factor approximation [14, 16]. We do not present here a

direct derivation of the full N = 1 supergravity describing these warped compactifications,

although it is important to investigate this more extensively. This should shed light on

the question whether a low-energy truncated theory in which one consistently integrates

out the higher Kaluza-Klein modes, leaving only massless or light modes, is still possible,

as seems to be the case for unwarped compactifications assuming a large-volume limit. It

should also allow to get a better handle on the inclusion of open string degrees of freedom

corresponding to space-filling D-branes. We leave these interesting problems for future

research.

Finally, we have used our formulation to investigate, starting from the four-dimensional

point of view, the effects on the internal geometry of possible non-perturbative corrections

to the superpotential. Our arguments, even if relying on some unavoidable simplifying

assumptions, suggest that corrections generated by D-brane instantons or gauge theory

strong coupling effects deform the generalized structure of the internal manifold. In par-
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ticular, an ordinary complex structure can be seen as a special ‘unstable’ point in the

space of generalized complex structures on a given manifold [6]. Thus, even if classically a

supersymmetric vacuum is (possibly almost) complex in the ordinary sense, after pertur-

bative and non-perturbative corrections are included, this property is expected to be lost.

We have shown that these effects can be addressed somewhat more quantitatively in the

case of IIB warped Calabi-Yau compactifications, which are equipped with the complex

structure of the underlying Calabi-Yau manifold and can be affected by non-perturbative

corrections arising from Euclidean D3-branes or stacks of confining D7-branes. These non-

perturbative effects were crucial in [28] to argue, from purely four-dimensional effective

theory, for the existence of AdS vacua for these flux Calabi-Yau compactifications (in fact

neglecting the non-trivial warp factor). We discuss how these AdS vacua can be understood

from a ten-dimensional point of view by smearing the instantonic four-cycle generating the

non-perturbative effect. Furthermore, we also considered more closely the effects of non-

smeared instantons to the underlying ordinary complex structure. Neglecting additional

terms related to the no-more vanishing cosmological constant, the net effect of an instanton

is to produce a localized obstruction term for the integrability of the underlying complex

structure. This in turn implies that it gets deformed to a truly generalized complex one,

also producing a superpotential for mobile space-filling D3-branes [10] in a geometric way.

The resulting superpotential is in perfect agreement with the superpotentials computed in

completely different ways in [30, 31]. In the case of confining D7-branes, our approxima-

tion seems to break down close to the internal divisor wrapped by the D7-branes and it

would be very interesting to re-examine this effect in an F-theory approach. In any case,

our results imply that generalized (complex) geometry should play an important role even

for the mostly-used IIB warped Calabi-Yau or F-theory compactifications once possible

perturbative or non-perturbative effects are taken into account.
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A. Generalized geometry and Hodge decomposition

From the supersymmetry of the background supergravity configuration follows that on

the internal manifold M there are two globally defined polyforms Ψ1,Ψ2 ∈ Γ(Λ•T ⋆
M ) that

satisfy eqs. (2.7) and (2.8). These polyforms can be regarded as global sections of the

spinor bundle S± (of positive/negative chirality) associated to the generalized tangent

bundle TM ⊕ T ⋆
M . Indeed, a generalized vector X = (X,a) ∈ TM ⊕ T ⋆

M acts on a polyform

ω ∈ Λ•T ⋆
M as

X · ω = ιXω + a ∧ ω . (A.1)

Because this action satisfies (X1 · X2 + X2 · X1) · ω = 2I(X, Y)ω, with the natural (6, 6)-

signature metric defined as

I(X1, X2) =
1

2
(a2(X1) + a1(X2)) , (A.2)

it makes TM⊕T ⋆
M into a Clifford algebra and defines an isomorphism between the polyforms

and the spinors of TM ⊕ T ⋆
M . The spaces of sections Γ(S+) and Γ(S−) correspond to the

spaces of even and odd polyforms respectively. The Mukai pairing of two polyforms ω1, ω2

is defined as

〈ω1, ω2〉 = ω1 ∧ α(ω2)|top , (A.3)

where we select the top-form and α is the operator that reverses all the indices of a polyform.

Under the equivalence with TM ⊕T ⋆
M -spinors the Mukai pairing is identified with the spinor

norm, from which we see that to properly define the isomorphism one needs to choose a

volume form.

In the presence of an H-field it is natural to use — as in for example eqs. (2.7) and (2.8)

— the H-twisted differential dH = d+H∧ on globally defined polyforms. As an alternative,

for any globally defined polyform ω one can consider the associated twisted polyform

ω′ = eB ∧ ω , (A.4)

where B is the NSNS 2-form potential, dB = H, making the twisted polyform in general

only locally defined. The twisted polyforms can be seen as a global section of the spinor

bundles S ′
± (of positive/negative chirality) associated to the extension bundle [55]

0 → T ⋆
M → E → TM → 0 . (A.5)

On the twisted polyforms the ordinary differential is the natural one, since dω′ = eB∧dHω.

Twisted quantities are perhaps more natural to discuss the independent degrees of freedom

since they also contain the B-field as we will see below. In the untwisted picture, the

information on these degrees of freedom is contained in H. In fact, the B-twist we have

performed is a gauge transformation of the formalism that brings us from one extreme

picture, where B = 0 in the pure spinors to the other extreme picture where H = 0. All

expressions stay the same. The Mukai pairing, for instance, is invariant under the twist, i.e.

〈ω1, ω2〉 = 〈ω′
1, ω

′
2〉. If at all possible, we will use the untwisted globally defined polyforms.
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Now, we define the null spaces L1, L2 ⊂ TM ⊕ T ⋆
M of Ψ1 and Ψ2 respectively, i.e.

X ∈ Γ(L1) if and only if X · Ψ1 = 0 and analogously for L2, and their complex conjugates

L1, L2. Ψ1 and Ψ2 are pure, which means that L1 and L2 have the maximal dimension,

in this case six. Moreover, since Ψ1 and Ψ2 are also compatible, (2.6a), one can define the

three-dimensional intersections

L+
1 = L1 ∩ L2 , L−

1 = L1 ∩ L2 , (A.6)

and complex conjugates. From these we can build the bundles C+, C− ⊂ TM ⊕T ⋆
M defined

as

C+ = L+
1 ∪ L+

1 , C− = L−
1 ∪ L−

1 . (A.7)

In general the elements of C+ and C− have the form

X+ = (X, (ĥ + B̂)X) ∈ C+ , X− = (X, (−ĥ + B̂)X) ∈ C− , (A.8)

with X ∈ TM . In the untwisted picture ĥ = h is the internal metric and B̂ = 0, while

repeating the above analysis for the twisted picture one sees that both h = ĥ and B = B̂

are contained in Ψ′
1 and Ψ′

2. Viewing the polyforms as ordinary spinor bilinears — and

thus in the untwisted picture — the vectors of C+ act as SO(6) gamma-matrices on the

left, while those of C− act on the right.

We can also define the generalized (almost) complex structures J1 and J2 associated

to Ψ1 respectively Ψ2, which have as +i-eigenspaces the bundles L1 and L2 respectively.

From the compatibility (2.6a) follows furthermore that we can construct the following

generalized Hodge decomposition of differential forms, see [6, 56]:

Λ• T ⋆
M ⊗ C =

⊕

p,q

Up,q , (A.9)

where Up,q is the intersection of the ip-eigenspace of J1 and the iq-eigenspace of J2. Com-

plex conjugation sends thus Up,q = U−p,−q. Ψ1 and Ψ2 are “highest-state” representations

i.e. Ψ1 ∈ Γ(U3,0) and Ψ2 ∈ Γ(U0,3). Moreover, we have the following behaviour for the

action of elements of L±
1 on ωp,q ∈ Up,q

X · ωp,q ∈ Up−1,q−1 for X ∈ L+
1 , Y · ωp,q ∈ Up−1,q+1 for Y ∈ L−

1 , (A.10)

and complex conjugate relations. This includes the possibility that X·ωp,q = 0 and the same

for Y. It follows that one can form the elements of Up,q by acting with an antisymmetric

product of (3 − (p + q))/2 elements of L+
1 and (3 − (p − q))/2 elements of L−

1 on Ψ1

or alternatively with an antisymmetric product of (3 − (p + q))/2 elements of L+
1 and

(3 − (q − p))/2 elements of L−
1 on Ψ2.

Furthermore, the generalized Hodge decomposition is compatible with the Mukai pair-

ing and the Hodge duality. Indeed, if ωp,q ∈ Up,q, then 〈ωp,q, χ〉 = 0 if χ is not in U−p,−q,

while Hodge duality satisfies the following property

ωp,q = i(−1)
p+q−1

2 ⋆6(α(ωp,q)) = ∓i(−1)
p+q−1

2 α(⋆6ωp,q) , (A.11)
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for any ωp,q ∈ Up,q and ∓ corresponds to ωp,q even/odd respectively. We will also sometimes

use the partial decompositions with respect to the eigenvalues of only one of the generalized

complex structures

Up =
⊕

q

Up,q , Vq =
⊕

p

Up,q . (A.12)

For compactifications to flat Minkowski space, for which W0 = 0, it follows from (2.7b)

and (2.8b) that J2 is integrable. This implies that the exterior derivative dH can only

change the q-value by ±1, an in particular one can split dH = ∂H + ∂̄H , where ∂H :

Γ(Vq) → Γ(Vq+1) and ∂̄H : Γ(Vq) → Γ(Vq−1). On the other hand, for J1, or also for J2 if

W0 6= 0, we do not have integrability, so that we cannot split dH analogously. However,

still the action of dH on the p or q-index in the decomposition (A.9) is not completely

unconstrained in terms of the Hodge decomposition. Indeed, from the identity

[LH
X

, Y·] = [X, Y]CH · , (A.13)

where [·, ·]CH indicates the twisted Courant bracket and

LH
X

≡ dHX · +X · dH , (A.14)

one can see, using an argument by induction, that

dH : Γ(Up) → Γ(Up−3) ⊕ Γ(Up−1) ⊕ Γ(Up+1) ⊕ Γ(Up+3) , (A.15)

and analogously for the Vq-decomposition.

B. Deformations of T and Z

In this section we want to describe in some detail the holomorphic structure of the field

space defined by Z ′ and T ′. In particular we want to identify a set of independent holo-

morphic infinitesimal deformations of Z ′ and T ′. As in the rest of the paper we will go

to the untwisted picture. This is possible since even if the untwisted T and Z do not

contain information on B, we can still consider all deformations as fluctuations of T and

Z, including deformations of the B-field. To stay in the untwisted picture one would in

a second step absorb the latter deformations in H by making a compensating small twist

over −δB. The discussion would essentially be identically in the twisted picture anyway,

simply adding primes everywhere and keeping in the back of our minds that the Hodge

decomposition is then with respect the twisted pure spinors.

Let us start by considering the pure spinor Z and the stable spinor ReT = Ret. Since

Ret determines Imt as explained in [5], together they define the SU(3) × SU(3)-structure

(which implies, once twisted, the metric and the B-field), the dilaton and the warp factor.

The SU(3) × SU(3)-structure constraint can be written as

〈Z, X · ReT 〉 = 0 , ∀X ∈ TM ⊕ T ⋆
M . (B.1)

In terms of the Hodge decomposition of appendix A the most general deformation of

Z satisfies δZ ∈ Γ(V3 ⊕ V1), where the part in Γ(V1) describes the deformations of the
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associated generalized complex structure J2 [6] and the part in Γ(V3) affects the warp

factor. It can be further split as follows

δZ = δ1Z + δ3Z + δ4Z , (B.2)

with

δ1Z ∈ Γ(U0,3 ⊕ U0,1) , δ3Z ∈ Γ(U−2,1) and δ4Z ∈ Γ(U2,1) . (B.3)

Similarly we have δt ∈ Γ(U3 ⊕ U1), where the part in Γ(U1) describes the deformations of

the other generalized complex structure J1 and this time the part in Γ(U3) affects both

the dilaton and the warp factor. It follows that the most general deformation of ReT has

the form

δReT = δ2ReT + δ3ReT + δ4ReT , (B.4)

with

δ2ReT ∈ Γ(U3,0 ⊕ U1,0 ⊕ U−1,0 ⊕ U−3,0) , δ3ReT ∈ Γ(U1,−2 ⊕ U−1,2)

and δ4ReT ∈ Γ(U1,2 ⊕ U−1,−2) . (B.5)

Of course, since ReT is real we have

δ2ReT |U−3,0 = δ2ReT |U3,0 , δ2ReT |U−1,0 = δ2ReT |U1,0 , etc. (B.6)

Now, δT contains also the RR variations δC, which can be decomposed in the same way

as we did for δReT

δ2C ∈ Γ(U3,0 ⊕ U1,0 ⊕ U−1,0 ⊕ U−3,0) , δ3C ∈ Γ(U1,−2 ⊕ U−1,2)

and δ4C ∈ Γ(U1,2 ⊕ U−1,−2) , (B.7)

with obvious reality conditions similar to (B.6).

Let us now impose the constraint (B.1). It is easy to see that it is automatic for

the deformations δ1Z and δ2ReT . These deformations, to be precise the parts in Γ(U1)

and Γ(V1), were already found in [6] as the deformations of the SU(3) × SU(3)-structure

that affect one generalized complex structure without touching the other. It also turns

out they are exactly the ones that deform the generalized metric (h,B). Furthermore, the

RR deformations are unconstrained, so that we can write out a first set of independent

holomorphic transformations

δ1Z ∈ Γ(U0,3 ⊕ U0,1) and δ2T ∈ Γ(U3,0 ⊕ U1,0 ⊕ U−1,0 ⊕ U−3,0) , (B.8)

where now the different components of δ2T are unrelated since T is complex.

On the other hand the constraint (B.1) relates the deformations δ3 in (B.3) and (B.5)

and the same for δ4. Hence the labelling. While for definiteness we focus on δ3, the

discussion is completely analogous for δ4. It is easy to see that any deformation δ3Z must
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be accompanied by a corresponding deformation δ3ReT and viceversa. In more detail, we

can parameterize such a deformation by a complex ε ∈ Γ(Λ2L+
1 ), so that

δ3Z = ε · Z ∈ Γ(U−2,1) and δ3ReT = Re(ε · t) ∈ Γ(U1,−2 ⊕ U−1,2) . (B.9)

Note that we can also use an analogous complex parameter ε′ ∈ Γ(Λ2L+
1 ) to define a general

δ3 deformation of the RR fields

−δ3C = δ3ImT = Re(ε′ · t) ∈ Γ(U1,−2 ⊕ U−1,2) . (B.10)

So we see that the δ3 deformations respecting the constraint (B.1) are parameterized by

the complex parameters ε and ε′, in terms of which δ3T has the form

δ3T = (ε + iε′) · t + (ε̄ + iε̄′) · t̄ . (B.11)

This means that ε and ε′ can in turn be expressed in terms of δ3Z and δ3T |U1,−2 , which

we can thus consider as independent holomorphic deformations. The same argument can

be repeated for the δ4 deformations, which can be holomorphically parameterized by δ4Z
and δ4T |U−1,−2 . We remark also that the deformations δ3, δ4 do not deform the spaces C+

and C−, and hence do not affect the generalized metric (h,B).

The final outcome of this discussion is that we can take as independent holomorphic

deformations of Z and T the following

δT ∈ Γ(V0 ⊕ V−2) and δZ ∈ Γ(V3 ⊕ V1) . (B.12)

Note that the holomorphic fluctuations (B.12) can be identified by using the Hodge decom-

position associated to Z alone, without using any other structure. The complex structure

they define is compatible with the natural one for Z but not with the natural one for T ,

since both δT |U±1,2 are anti-holomorphic functions of both δZ|U±2,1 and δT |U±1,−2 .

C. Weyl invariant N = 1 supergravity

We start from the superconformal supergravity discussed in [25]. Let us indicate the chiral

fields with φI and use conventions similar to [25] for writing complex conjugated quantities,

e.g. φ̄I ≡ (φI)∗, and derivatives e.g. NI = ∂N/∂φI . Omitting scalar and vector kinetic

terms, the bosonic Lagrangian has the form

(− det g)−1/2L =
1

2
N R +

1

3
W∗I(N−1)I

JWJ − 1

2
(Ref)−1(D,D) + . . . (C.1)

where N is a real function of φI and φ̄I , W depends holomorphically on the φIs and is

related to the standard superpotential as in eq. (3.34), Ref is the metric of the vector

multiplets — which is the real part of a holomorphic function of the φIs — and finally D
represents the D-terms (or Killing potentials), which symplectically generate the gauged

isometries (see eq. (3.28)).
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The different chiral fields transform with certain weights (w, c) under the dilatation

and chiral transformations20

φ → ewσ+icαφ , (C.2)

and N and W must transform homogeneously under dilatation and chiral transformations

with weights (2, 0) and (3, 1) respectively. For example, in our setting Z has weights (3, 1)

while T has weights (0, 0).

For simplicity, in this appendix we assume that the chiral fields φI have been redefined

such that they all have weights (1, 1/3). Then, for our purposes, the relevant terms in the

superconformal transformations of the gravitino ψµ, the fermions of the chiral multiplets

χI and the gauginos λ are given by

δψµ = ∇µζ− − γµξ+ + . . . ,

δχI =
1

6
WJ(N−1)J Iζ+ + φ̄Iξ+ + . . . ,

δλ = − i

2
(Ref)−1Dζ+ + . . . ,

(C.3)

where ζ+ and ξ+ are the generators of the standard (Q-)supersymmetry and the S-

supersymmetry respectively.

To partially break the superconformal invariance while keeping the invariance under

the bosonic gauge symmetry (C.2) it is sufficient to eliminate the gauge field of the di-

latations (which we have not mentioned at all and is called bµ in [25]), and gauge-fix the

S-supersymmetry by eliminating one of the spinors of the chiral multiplets (the one asso-

ciated to the compensator). This can be explicitly done by imposing the gauge-fixing [57]

N I χI = 0 . (C.4)

This fixes ξ+ uniquely as

ξ+ = − W
2N ζ+ , (C.5)

so that after the gauge-fixing the standard supersymmetry transformations take the form

δψµ = ∇µζ− +
W
2N γµζ+ + . . . ,

NI
JδχJ =

1

6

(

WI −
3NI

N W
)

ζ+ + . . . ,

δλ = − i

2
(Ref)−1Dζ+ + . . . .

(C.6)

20Note that our convention for the four-dimensional chiral operator is opposite to the one of [25], so that

chiral here corresponds to anti-chiral there.
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D. Supersymmetric D-brane instantons in flux vacua

In this appendix we will introduce supersymmetric D-brane instantons, or shortly E-branes,

and derive their calibration form. E-branes live on an Euclidean background which we

obtain by analytical continuation from the Minkowskian one.

We take the ten-dimensional gamma matrices to split as follows into four- and six-

dimensional gamma-matrices

Γµ = γµ ⊗ l1 , Γm = γ(4) ⊗ γ̂m , (D.1)

where γ(4) = iγ0123 is the four-dimensional chiral operator, while the six-dimensional in-

ternal one is given by γ̂(6) = −iγ̂123456. Under a Wick rotation x0 → −ix0 we have to

correspondingly rotate Γ0 → −iΓ0. Thus the ten-dimensional gamma matrices are no

longer real and we must relax the reality condition on ǫ1,2. This can be achieved by relax-

ing in turn the reality condition on ζ and considering ζ+ and ζ− in (2.2) as independent

spinors which are chiral with respect to the (Euclidean) 4d chiral operator γ(4) = γ0123.

This procedure must be seen as an analytical continuation, where the total number of

independent (holomorphic) components contained in ζ+ and ζ− is still four, like in the

Minkowskian case.

Let us now take an E-brane stretching in p + 1 dimensions, which we will call an

Ep-brane — following the naming conventions of D-branes as is customary — that wraps

a Euclidean generalized cycle (Σ,F) inside M . The Ep-brane bosonic action SE in the

Wick-rotated vacuum is given by

SE = 2π

∫

Σ
dp+1σ e−Φ

√

det(g|Σ + F) − 2πi

∫

Σ
C|Σ ∧ eF , (D.2)

and enters the path-integral via exp(−SE). The fermionic completion of (D.2) can be

described in the Green-Schwarz formalism by considering two ten-dimensional Weyl spinors

θ1 and θ2 as world-volume dynamical fields. Furthermore the resulting action has a gauge

κ-symmetry that around a bosonic configuration takes the form

δκθ1 = κ , δκθ2 = Γ−1
E κ , (D.3)

where κ is a Weyl spinor of positive chirality and

ΓE =
i

√

det(g|Σ + F)

∑

2l+s=p+1

ǫα1...α2lβ1...βs

l!s!2l
Fα1α2 · · · Fα2l−1α2l

Γβ1...βs
. (D.4)

From the κ-symmetry (D.3), an instantonic Ep-brane preserves a Killing spinor (ǫ1, ǫ2)

if and only if

ǫ1 = ΓEǫ2 . (D.5)

Since in the Euclidean frame, ζ+ and ζ− are independent, we have two kinds of background

Killing spinors

chiral: ǫL
1 = ζ+ ⊗ η

(1)
+ , ǫL

2 = ζ+ ⊗ η
(2)
∓ ,

anti-chiral: ǫR
1 = ζ− ⊗ η

(1)
− , ǫR

2 = ζ− ⊗ η
(2)
± . (D.6)
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By imposing (D.5) for (ǫL
1 , ǫL

2 ) one gets

γ̂′
(p+1)η

(2)
∓ = −iη

(1)
+ , (D.7)

for IIA/IIB respectively, and

γ̂′
(p+1) =

1
√

det(g|Σ + F)

∑

2l+s=p+1

ǫα1...α2lβ1...βs

l!s!2l
Fα1α2 · · · Fα2l−1α2l

γ̂β1...βs
. (D.8)

On the other hand, imposing the supersymmetry preservation on (ǫR
1 , ǫR

2 ) one gets

γ̂′
(p+1)η

(2)
∓ = iη

(1)
+ , (D.9)

again for IIA/IIB respectively.

We thus see that an instantonic E-brane can preserve only half of the background

supersymmetry. We will refer to E-branes preserving the chiral Killing spinors (ǫL
1 , ǫL

2 ) as

instantonic E-branes, while to those preserving the anti-chiral Killing spinors (ǫR
1 , ǫR

2 ) as

anti-instantonic E-branes. Comparing with the results of [9], we see that supersymmetric

instantonic E-branes wrap exactly the same generalized calibrated cycles in the internal

space as supersymmetric space-time filling branes, i.e. they satisfy the condition

√

det(g|Σ + F) = ReΨ1|Σ ∧ eF
∣

∣

top
, (D.10)

while anti-instantonic E-branes have opposite orientation.

One can thus borrow several results for space-time filling D-branes discussed in [9 –

11]. In particular, one can split the supersymmetry/calibration condition (D.10) in a pair

of conditions that, in the case of space-filling D-branes, correspond to the F-flatness and

the D-flatness of the four-dimensional description [9, 10]. The F-flatness requires (Σ,F)

to be an (almost) generalized complex cycle. Using the dual generalized current, it can

be rephrased as j(Σ,F) ∈ Γ(V0) [11]. For example, IIB SU(3)-structure compactifications

are complex and in this case the F-flatness requires Σ to be holomorphically embedded

and F2,0 = 0. The D-flatness condition requires, in the notation of this paper, that

〈Im t, j(Σ,F)〉 = 0. For example, in the case of a four-cycle on a IIB warped Calabi-Yau

compactification, it requires the primitivity of F with respect to the underlying Kähler

structure (see [9 – 11] for more details and examples).

We proceed with the instantons and find that the action (D.2) reduces to

SE(T ) = 2π

∫

Σ
(e−ΦReΨ1 − iC)|Σ ∧ eF = 2π

∫

M
〈T , j(Σ,F)〉 , (D.11)

pointing to the definition (3.8) of T as a natural holomorphic field. The same identification

can be obtained from space-filling D-branes. Indeed, using the results of [9, 10] it is easy

to see that the four-dimensional bosonic action for the U(1) gauge fields living on the

dimensionally reduced D-brane is given by

− 1

16π2

∫

X
d4x

√

− det g ReSE(T ) FµνFµν − 1

8π2

∫

X
ImSE(T ) F ∧ F + . . . (D.12)
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where F is the field-strength of the massless gauge field arising in the dimensional reduction

(in our units Fµν = Fµν/2π). The ellipsis stands for higher Kaluza-Klein contributions that

can be simply obtained by considering a more general F, which depends also on the internal

world-volume coordinates, and ‘moving’ it inside the integrals in (D.11).

As a final observation, let us recall that a general infinitesimal deformation of a gener-

alized cycle is described by a section X of the generalized normal bundle N(Σ,F) [10]. From

the analysis of [11] the variation of the action under such a deformation is given by

δXSE = 2π

∫

M
〈dHT , X · j(Σ,F)〉 . (D.13)

It follows immediately from (4.8a) that the instanton action is invariant under variations

X ∈ Γ(N (1,0)
(Σ,F)) with N (1,0)

(Σ,F) = N(Σ,F) ∩ L2. In [11] the sections of Γ(N (0,1)
(Σ,F)) = N(Σ,F) ∩ L̄2

were used to parameterize the holomorphic deformations of generalized cycles and thus we

see how the instanton action (D.11) depends holomorphically not only on the closed string

degrees of freedom but also on the open string ones. Similarly, the anti-instanton action

is invariant under the variations X ∈ N 0,1
(Σ,F) and thus it is anti-holomorphic in both the

closed and open string degrees of freedom.

E. Orientifolds in generalized flux compactifications

A proper flux compactification usually needs the inclusion of orientifolds to satisfy tadpole

conditions and circumvent no-go theorems [58]. Orientifolds also break supersymmetry

explicitly (off-shell), reducing in our case a possible underlying N = 2 supergravity de-

scription to N = 1. Orientifolds in SU(3)× SU(3) compactifications were studied before in

e.g. [15, 34, 35].

An orientifold action O is a composition of a reflection on the world-sheet (denoted

by Ωp) exchanging the left-movers with the right-movers, and a target-space involution σ

(σ2 = 1 on bosonic fields) acting on the internal manifold. A factor (−1)FL , where FL is

the fermion number of the left-movers, is sometimes needed to ensure O2 = l1 on all states

including spinors. Whether it appears or not depends on the number of +1-eigenvalues of

σ, which also determines the dimensionality of the orientifold plane. This is the fixed point

set of the involution which, in our case, fills the four-dimensional space-time.

For the dilaton Φ, metric h and NSNS three-form H to be invariant under the total

orientifold projection O, they have to transform under the involution as

σ∗Φ = Φ , σ∗h = h , σ∗H = −H , (E.1)

while for the RR potentials we need

σ∗C = α(C) (O3/O4/O7/O8) , σ∗C = α(C) (O5/O6/O9) , (E.2)

For N = 1 supersymmetric orientifolds we need to have moreover for the pure spinors

σ∗Ψ1 = α(Ψ̄1) (O3/O4/O7/O8) , σ∗Ψ1 = −α(Ψ̄1) (O5/O6/O9) , (E.3a)

σ∗Ψ2 = α(Ψ2) (O3/O6/O7) , σ∗Ψ2 = −α(Ψ2) (O4/O5/O8/O9) . (E.3b)
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It follows that for the holomorphic variables

σ∗T = α(T ) (O3/O4/O7/O8) , σ∗T = −α(T ) (O5/O6/O9) , (E.4a)

σ∗Z = α(Z) (O3/O6/O7) , σ∗Z = −α(Z) (O4/O5/O8/O9) . (E.4b)

The same conditions (E.4) are equally valid for the twisted variables T ′ and Z ′ since

from (E.1) we have σ∗B = −B. One can easily check that the various Mukai pairings,

appearing in the integrand of the superpotential (3.14) and the Kähler potential (3.38),

transform under the orientifold involution appropriately as the volume form, which means

they change sign in type IIA and stay invariant in type IIB. Furthermore, we will always

implicitly assume that we integrate over the covering space of the orientifold action and

then divide by an appropriate factor to avoid overcounting.
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[30] M. Berg, M. Haack and B. Körs, Loop corrections to volume moduli and inflation in string

theory, Phys. Rev. D 71 (2005) 026005 [hep-th/0404087].

[31] D. Baumann et al., On D3-brane potentials in compactifications with fluxes and wrapped

D-branes, JHEP 11 (2006) 031 [hep-th/0607050].

[32] M.K. Benna, A. Dymarsky and I.R. Klebanov, Baryonic condensates on the conifold,

hep-th/0612136.
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